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Abstract

This proposal investigates the photon-statistics of light emitted by a statistical ensemble of cold atoms
excited by the near-field of an optical nanofiber tip. Dipole—dipole interactions of atoms at such short
distance from each other suppress the simultaneous emission of more than one photon and lead to
antibunching of photons. We consider a mean atom number on the order of one and deal with a
Poissonian mixture of one and two atoms including dipole—dipole interactions and collective decay.
Time tracks of the atomic states are simulated in quantum Monte Carlo simulations from which the
¢®-photon autocorrelation function is derived. The general results can be applied to any statistical
ensemble of emitters that are interacting by dipole—dipole interactions.

1. Introduction

Single-photon sources are essential building blocks of devices in quantum information science [1]. An ideal
source emits exactly one photon into a single optical mode at an arbitrarily chosen time, with each photon being
indistinguishable from all others generated by the source. The demand that no more than a single photon is
emitted at a time typically requires the use of single emitters, for instance single atoms, molecules, quantum dots,
or single defects in crystal lattices [2—10]. The fabrication of such single emitter sources is however technically
demanding [11], which motivates the search for new approaches that are simpler to build. The idea presented in
this paper is to collect the fluorescence from a nanoscale volume that contains a statistically varying number of N
emitters with an average on the order of (N') ~ 1. This contains the possibility that more than one emitter is
present within the volume. However, in this case the excitation and emission process can be dramatically altered
due to interactions between the emitters, [12]. By using cold atoms as emitters the Doppler effect of moving
atoms can be eliminated. We theoretically analyze the light statistics of the fluorescence of a statistical mixture of
one and two atoms with and without interactions by simulating coherent excitation by a laser field emerging
from the fiber tip, and incoherent emission using a quantum Monte Carlo approach. From the resulting time
stamps at which photons are emitted the corresponding g”-function is calculated. The paper is organized as
follows: section 2 defines the problem of how statistical ensembles of emitters can emit light with subpoissonian
statistics and large brightness, which at first glance seem to be contradicting requirements. Section 3 contains the
theoretical model used for calculating the fluorescence from two atoms interacting with a classical pump light
field and by dipole—dipole interactions among them. In section 4 an analytic solution of the Hamilton-operator
(neglecting the decay terms) shows that an increasing interaction strength leads to a retardation of the
simultaneous excitation of both atoms which is eventually responsible for the evolution of a subpoissonian
photon statistics. Section 5 contains results of the quantum Monte Carlo simulations with interaction strength
81> and collective correction 7, to the decay rate as free parameters. The corresponding ¢ photon-
autocorrelation functions exhibit photon-antibunching for increasing values of ¢;,. Eventually, section 6 deals
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Figure 1. Sketch: a nanotip is immersed into a gas of cold atoms. The tip emits light and excites the fluorescence of a statistical number
of atoms in a volume Vat the tip apex. Plots: without interactions, the corresponding value of g;z) (0) (blue solid line) is increasing with
average atom number £ in the volume. The corresponding brightness B of the source (red solid line) is proportional to . If
interactions suppress the emission from more than one atom, the value of g;lz) (0) = 0 forany  (blue dashed line), while the
brightness exhibits a maximum (red dashed line).

with the experimental situation of Rubidium atoms at the apex of a nanoscale fiber tip. The simulations take
both the interatomic interaction and the interaction with the surface of the nanotip into account. The dipole—
dipole interaction strength 6, and the collective correction -, are determined using realistic parameters. The
corresponding ¢ function is calculated from a large number of random atomic positions.

2. Light statistics of ensembles

The physical mechanism described in this paper can be applied to any statistical ensemble of emitters in a
nanoscale volume. However, the specific system which we have in mind is that of an optical fiber which is
tapered down at one of its ends to a nanotip in order to increase interactions with dipole emitters nearby the tip
[13—16]. We assume the tip is immersed into a gas of cold atoms with number density p, and a classical light field
emerging from the fiber end excites atoms in a small volume V'in front of its apex, figure 1. Thus, an average
number of

w=pvV (D

atoms is within the volume. The exact number N of atoms in the volume is poissonianly distributed. i.e. the
probability of finding N atoms in the volume is given by

N
P(N) = %e’“. )

We will first show how the light statistics is influenced by such a poissonianly distributed number of non-
interacting emitters. The g¢®()-function

(@' (na'(t + nat + ma())

@) —
(1) @ Oaw)

3

is proportional to the probability density of the emission of a photon at a time difference 7 after the emission of a
first photon. The total photon annihilation operater d refers to a single optical mode which interacts with the N
atoms. We assume that the interatomic distance is well below the optical wavelength such that propogation
effects between photons emitted from distant atoms can be neglected. The g¢®-function is scaled such that
g@(7) — 1for sufficiently large 7 where no correlations between emission processes exist. Antibunching,
which is the signature of single photon emission, corresponds to a value of ¢*(0) = 0. For a single atom the
emission is antibunched due to the time it takes to re-excite the atom once it is projected to its ground state after
the emission of a photon. For an arbitrary fixed number of Nindependent atoms the value of gl(qz) (0) scales with
the atom number as
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N-—-1

N
This result is caused by the effect that, whenever one of the N atoms emits a photon, any of the other N — 1
atoms can emit a photon, too. Finally, the contributions of different atom numbers to the g(z)-function are

weighted with their statistical probability P,(N) of finding N atoms in the volume and with the rate Ry at which
photons are emitted by the N atoms:

(C))

1 oo
glr=0)= 2 > gP(r = 0)B.(N)Ry, (5)
N=1

with normalization R = " B,(N)Ry. Note that g(z)—functions of different realizations can be averaged with
their relative weight, when the timescale on which the realizations are stable is larger than the correlation time; in
our case i.e. the timescale on which the position of an atom changes substantially. The condition is very well
fulfilled for ultracold atoms at the nanotip. With a velocity of | mm s~ ' they move over a distance of 1 nm
withinatime of 1 ps, which is much larger than the correlation time which is on a timescale of

1/(27y,) = 27 ns for Rubidium with natural linewidth +,. For Nindependent emitters the rate increases as

Ry = NRy,i.e. the number of emitted photons increases linearly with the number of atoms. Thus, the
¢?-function quickly tends to a value of one for increasing mean atom number /1, as shown in figure 1.
Nevertheless, antibunching can be observed also with statistical ensembles of emitters, if 1 < 1, where—in turn
—the probability P,(0) that no atom is in the volume gets high. This effect reduces the brightness B of the source,
similar to other non-deterministic sources like those based on parametric down-conversion [8]. We define the
brightness as total photon emission rate normalized to the photon emission rate of a single atom:

1 &
B(w) = — 3 B.N)Ry. (©)
R vD)
For independent atoms the brightness
o0
B(w) = ) B(N)N = 4 )
N=1

is equal to the average atom number i, see figure 1. Interactions are able to reduce the emission rate Ry for atom
numbers N > 1.In an extreme case, interactions would completely suppress the excitation of more than one
atom, and the emission rate for a single atom would be Ry = ~,, whereas Ry = 0for N > 1. The corresponding
value of the correlation function would be g(0) = 0 for any  with a maximum brightness of B ~ 0.37 for

1 = 1, see dashed lines in figure 1. The statistics of this single-photon source shows perfect antibunching while
the brightness is comparable to a single-emitter based photon source. The following sections deal with the
influence of dipole interactions on the light statistics. We focus specifically on the case of one and two atoms.
This is justified by the fact that for increasing atom number in the volume the suppression will be even stronger
due to the decreasing distance between the atoms. Moreover, for a mean atom number of ;¢ = 1 the Poisson-
probability that three atoms are within the volume is only P(3) = 0.06.

3. Quantum jump approach for two atoms

The theoretical method we use in this paper is known as the quantum jump approach to dissipative dynamics
[17-20]. The atomic state | ¥;) of atom number j = 1, 2 is described in the matrix basis of the ground state |g) and

the excited state |e)
0= (- () .

The states are coupled by a laser field with detuning A = w; — w, between the laser frequency w; and the
atomic transition frequency wy of the atoms. The Rabi frequency of the coupling is €2; = d¢&; /7, with dipole
matrix element d of the transition, and electric field amplitude &; of the light at the position of the corresponding
atom. In the rotating frame, the effective single-atom Hamiltonian reads

H—s 0 /2 9
T Q2 A ®
The total wavefunction | ¥) describing the state of both atoms including correlations is an element of the four-
dimensional tensor product Hilbert space with the vector basis
lgg) =18) @ lg), Ige) = Ig) @ le),
leg) =le) © Ig), lee) = le) @ [e), (10)
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where the operator left and right to ® corresponds to atom no. 1 and 2, respectively. The Hamiltonian acting on
the tensor space is given by the single atom Hamiltonians (9) via

Ho=H®I1l+1® H, (11)
with two-dimensional identity matrix 1. Thus, the Hamiltonian without interactions is
QB O
2 2
N L
Hy,=17 é é , (12)
2oy A2
2 2
90,
2 2

Dipole—dipole interactions between the two atoms are described by the interaction Hamiltonian [21]

W = /i6,(S* ® S~ + S~ ® SP)

00 0 0
=/ g 6(1)2 5(1)2 8 , (13)
00 0 0
with interaction potential strength 6;, and operators
$* = le) (g, (14)
§= = lg)(el. (15)
The complete Hamiltonian is thus given by
Hioe = Ha + W. (16)

The evolution of the density matrix is determined by the master equation in its Lindblad form [21]

dp ( +
. Ho 4] 1 S S
a /i tot> P] — ,le Yij P
1 _ _
Here, the matrix
(M 2
i = (’712 ’Yz) (18)

is defined with decay rates v, and 7, of the individual atoms and collective correction 7, to the decay rate which
will be introduced in section 6, and

SE=5*®@1l, (19)
S =1® % (20)

The quantum state trajectory is simulated in time steps with length dt. For each time step the probability thata
jump m = 1,2 occurs is given by

b, = (U] LjL,|¥)dt. (21)

The collective jump operators
Ly = JA (S + BSy), (22)
= JA (=88] + asy). (23)

are derived following [20] as eigenvectors of the matrix (18) with eigenvalues

A =7+ JOm)? + A, (24)
A =7 — J(m)? + AZ, (25)

where

1
¥ = E(’h + 72)s (26)
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A =201, 27)

They are linear combinations of the single atom jump operators S; with coefficients

i A, 24 A2
_osign() (A, + ()™ + A%) 28)

a = >
Jo? + @, + Jon)? + A2y

|'712 | . (29)

ﬂ =
\/(712)2 + (A, 4+ J(m2)* + Ai )?

For equal single atom decay rates y; = 7, = 7, the collective jump operators are given by

+ . _ _
L= ,/%'7”' (sign(12) ST + S (30)
L= V_T'W' (=S + sign(12)5), (31)

corresponding to superradiant and subradiant decay, respectively. In the case considered in section 6 where the
atoms may have different distance from the nanotip, the single atom decay rates may also differ from each other.
Finally, the decay terms can be included into an effective Hamiltonian

He = Hio — i/, (32)
with

J= % STL L (33)

m

The calculated probabilities (21) for the individual jumps are compared with a random evenly distributed
number r € [0, 1].Ifr < p; = 1 — (p, + p,) nojump occurs, and the wavefunction evolves according to
Hamiltonian dynamics with Hg. As the effective Hamiltonian is not Hermitian (due to the decay terms), the
wavefunction is renormalized to its absolute value after each step. The Hamiltonian dynamics can thus be
summarized as

exp(—iHerdt)| W)

W) — [wy = . -
| exp(—iHepdt) | W)

(34)

Note that the value of dthas to be chosen such that p, 4+ p, < 1.

If, on the other hand, a jump occurs, i.e. for r > p,, which jump operator L,,, is applied is given by the value of
rcompared to the smallest integer m = 1,2suchthat _)' _ ( p, > r.This condition is a clever way of
determining the jump operator depending on its probability. After the jump, the wavefunction is renormalized
like in the Hermitian case. Thus, the jump dynamics is summarized as

Lyl¥)

U) — |U) = . 35
[¥) — |¥) LT (35)

Before we apply this quantum jump approach to specific situations we present in the following section a general
argument why dipole interactions can lead to the suppression of a simultaneous emission of photons from both
atoms. For that reason we analytically solve the Schrédinger equation for two atoms including the dipole—dipole
interactions.

4. Analytical solution for two atoms in free space including dipole—dipole interactions

The Schrédinger equation with the Hamiltonian Hy,, from (16) including dipole—dipole interactions (but
without the decay terms) can be solved analytically. We consider here the case where A = 0,andQ); = Q, = Q
in order to keep the calculation as simple as possible. Thus, we have

5
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Figure 2. Time tracks of the doubly excited state occupation P.(t) (red solid lines) for varying interaction strength. In these plots
A = 0,and Q2; = €. The stronger the interaction strength is, the longer it takes to excite both atoms. The product of the probabilities
that, respectively, one of the atoms is excited (blue dashed lines) differs from P..(¢) for interaction strength 6y, = 0.

0 10 1o o
2 2
Lo o s, Lo
H = 7| 2 : (36)
—Q b6, 0 =0Q
2 2
o La o
2 2
The formal solution of the Schrodinger equation is
[W(t)) = e ot |W(0)). (37)
The matrix exponential in (37) can be solved analytically. If initially both atoms are in the ground state, i.e.
U(0) = |gg) the projection of () onto the doubly excited state is given by
2 — i(d12—A)t i(612+A)t
(ee|W (1)) = %(—3612B A e 4 3t A es " ) - %, (38)

with parameters
A = 65 + 402, (39)

1
B= 5(612 — AP — (65, + Q) (612 — A) — 6, (40)

1
C= 5(612 + AP — (6%, + Q) (612 + A) — 61,02 (41)

The probability of a double-excitation B (t) = |{ee|¥(t))|* is plotted in figure 2 for varying interaction
strength 61,. An increasing interaction strength slows down the timescale of the excitation process. This is the
crucial feature for the suppression of the photon emission by more than one atom and leads to a suppression of
the simultaneous emission of more than one photon. A further interesting feature can be observed in figure 2,
when P,.(f) is compared with the product of the probabilities that respectively one of the atoms is excited,
whereas the state of the other atom is arbritrary. For 6, = 0 these probabilities differ from each other. This
discrepancy is interpreted as interaction-induced entanglement between the two atoms and will be analyzed in a
separate work, [22]. In the following section the decay term is reintroduced, and the quantum jump approach is
applied in order to derive corresponding g¢®-functions.

6
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Figure 3. The g(z)—function including interactions between the atoms is plotted for interaction strength 6,, = 0 (red curve) and
612 = 10 7 (blue curve). The length of the simulated trajectoriesis T} = 2 x 10°/~ for the one-atom caseand T, = 1 x 10>/~ for
the two atom case, with ¥ = 7, = 7,. The resolution is set to a value of df = 10> /~. We checked that the simulation result is
independent from the exact value of dz. For the one-atom case the Rabi frequencies are chosen as 2; = yand {2, = 0, whereas for the
two-atom case Q; = €2, = . The detunings are chosen to be A = 0. For comparison, we included the analytical g¢®-function of the
light emitted from a single emitter (black dashed line) with 2 = .

5. Quantum jump approach including dipole—dipole interactions

In this section we analyze general situations which do not depend on a specific geometry, and in particular not
on the presence of a nanotip. For that reason we regard the interaction strength 8;, as free parameter. Moreover,
we set both decay rates to the same value v = ; = +,, and — first — neglect the collective decay by setting

12 = 0. The latter assumption is justified in the sense that in real situations ¢;, can have arbitrary large values
whereas the collective correction term is always limited to the range 7;, € [—, 7y]. Time trajectories of the
Hamiltonian (16) including the interaction terms are simulated using the quantum jump approach explained in
section 3. In order to take the Poisson-distribution of atom numbers into account, the relative length of the
corresponding trajectories is adjusted accordingly. We chose here an average atom number of n = 1. With
Py(1) = 0.37 and P;(2) = 0.18 the trajectory of the one-atom case is twice as long as that of the two atom case.
The no-atom case with P;(0) = 0.37 is not considered as it does only reduce the brightness, but leaves the
¢?-function unchanged. Cases with more than two atoms are also not considered, because their contribution is
small. Each simulation results in a series of time-stamps when photons are emitted corresponding to the times a
jump occurs in the simulation. Finally, the time trajectories for the one-atom and two-atom case are appended
to each other, and from the resulting trajectory the ¢®-function is calculated. Corresponding g”-functions
derived from such simulated time trajectories are exemplarily shown in figure 3. From time trajectories as shown
in figure 3 the value of g*(0) is evaluated and plotted in figure 4. Without interactions ¢*/(0) = 0.34 coincides in
good approximation with the value of a Poissonian statistical mixture of N atoms as derived in equation (5). This
justifies the validity of the approximation of neglecting emission from more than two atoms for the present case
of 1 = 1. For increasing interaction strength the value of §*(0) tends to zero, and the emission resembles more
and more that of asingle atom. The brightness however does not tend to zero, but saturates at a value given by the
fraction of the duration of the single-atom trajectory as compared to the total time. This corresponds to the fact
that single photons are emitted with the single-emitter rate whenever a single atom is in the volume whereas at
most one photon is emitted at times when two atoms are in the volume. In order to take the effect of collective
decay into account, which was neglected in the main part of figure 4, we simulated time trajectories for fixed
values of 6, and varying 7y, ,. The result is plotted in the inset of figure 4 for ;, = 57. We observe that the value
of g®(0) is increased for +,, — =. This effect is more pronounced for small interaction strength .. For large
values of 0;, the influence of y;, on the g‘z)-function disappears. Concluding, photon antibunching can be
reached in a statistical mixture of N interacting atoms without the drawback of alow brightness which isa
known issue in standard non-deterministic single photon sources. The following section analyzes the specific
situation of atoms that are excited by the light field emerging from a tapered nanotip as sketched in figure 1.
Collective dispersive and radiative effects of the two atoms as well as the dispersive and radiative influence of the
surface on the individual atoms are taken explicitely into account.

7
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Figure 4. The value of g*(0) (left axis, blue line) tends to zero for increasing interaction strength &, ,, whereas the brightness B (right
axis, red line) saturates at a value of B = 2/3 (for yt = 1). In the main part of the figure, the collective correction is set to zero, i.e.
712 = 0. Collective decay can however increase the value of g<2)(0), as shown in the inset for an intermediate value of §;, = 5+. This
effect disappears for large interaction strength. For small values of 6;, it is more pronounced and can even lead to the bunching of
emitted photons. The statistical error of g?(0) is indicated by the height of the rectangles.

6. Cooperative effects of two atoms at the nanotip

We consider two quantum emitters of transition frequency wy = kqclocated at positions r; = rifjand r, = n
in the vicinity of a spherical nanotip of radius Ry, (1, 72 > Ryip), dielectric permittivity €, and centered at the
origin. The interatomic separationis 1, = |1 — 1|, as shown in figures 5(A) and (B). For large ry5, i.e. korip > 1,
the collective correction to the decay rate and dipole—dipole interaction strength are negligible for any mutual
orientation of the dipole moments, vy;, = 61, = 0. Conversely, in the limit of separations r;, much smaller than
the optical wavelength, i.e. kon, < 1, the collective correction and the dipole—dipole interaction strength are
given by the approximate expressions [23]

Yo & A (d - dy), (42)
and
12~ 3y [(dr - do) — 3(ds - #12)(da - #12)] /4(k01’12)3, (43)

respectively, where d; = d., &,— and 1, = 1,1}, with the dipole matrix element d,, [23-26]. Our simulations are
based on the general expression valid for arbitrary separations 1, [23, 24]

Y2 3.4 4 A.a o sin(konn)
—— =—qld - dy — (dy - F1)(d; - B1p)] ————=
JN72 2{

0M2

A n Ao A . cos (korip)  sin (ko)
. _ . . — 44
+ [(di - dp) — 3(d; - T12)(dy - B12)] X [ (koria)? (kori2)? ]}’ (44)
612 3 A~ A ~ N ~ N COS(koﬁz)
2 _ 20 (1§, dy — (- Fio)(dy - By SB0N2)
SR 4{ [di-dy — (di - £12)(dz - £12)] koris
dd — 3 ol - B sin (korip) | cos(kotiz) ' 45
+ [(d; - dy) (dy - £1)(d; - T12)] X [ (kors)? + (koria)? (45)

Equations (44) and (45) are well-known expressions for the collective correction to the decay rate and dipole—
dipole interaction strength of two dipole emitters in vacuum [27]. However, here we are interested in the
influence of a spherical nanotip on the two-atom dynamics, which is expected to be modified not only by the
collective damping but also by the Purcell effect [28]. To this end, we use equations (44) and (45) and substitute
the free-space decay rates by the decay rates y; and -y, of the corresponding atoms not in free space but in the
vicinity of the spherical nanoparticle. This means that the decay-rate enhancement induced by the dielectric
nanofiber tip enters into equations (44) and (45) as a perturbation in the single-atom decay rates., i.e.
V=%t ’y;ef, where Wj.ef is the reflected-field contribution associated with atom j = 1, 2. Since y;, < . /%,%;>
the approximate collective parameters take into account both the emitted-field contribution from each atom
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Figure 5. Two atoms are positioned at a fixed distance r;, = 50 nm in z-direction (geometry A), resp. in y-direction (geometry B). In
both cases the collective correction 7;, and the dipole—dipole interaction strength 6, are calculated as function of the atomic positions
defined by rand 6 for ¢ = 90°, relative to the sphere. The atomic transition wavelength is set to A = 780 nm in order to correspond to
the D2-line of Rb. Note that geometry A is asymmetric with respect to the y axis. The white dashed region in the upper left corner of
(A-i) and (A-ii) thus corresponds to the situation where one of the atoms would be situated within the sphere.

and the overall reflected-field contribution from the nanofiber tip. We have verified that this approximation
provides accurate results when compared with the exact solution as long as we consider moderate permittivities
withIm(e) = 0ande > 0, i.e. there is no ohmiclosses on the dielectric nanotip. To simplify our discussion, we
also consider that the spherical nanotip is much smaller than the emission wavelength, i.e. koR;;,<<1. Under this
last assumption, the single-atom decay rate is given by [29]

v= - )2+ AN = (- )2, (46)
where
1

i 3k(? 2ikar: 1 2 1

— ~ 1+ —Im< a(wy)ek | — + - + ) (47)

Yo 2m ’ (korp)* itkory)®  (kory)°

I 3

! 3k} o 2 3 2 1
—L =1+ =2 Im< a(w)ekon — - — + - + , (48)
Yo 8w ’ (korj)*  ilkorj)®  (korj)*  ikorj)®  (kory)®

with 5, = dj wp /3meg /ic? the Einstein A coefficient.

We have verified that equations (47) and (48) are very good approximations for the exact expressions in [30]
when the sphere is subwavelength. The polarizability a(w) of a subwavelength nanosphere, accounting for
radiation damping, is [29]

Qo
a(w) = ———m——, 49
) 1 —i(k3/6m)ayq 49)
where oy = 47rRt3ip(s -1 / (e + 2)is the quasi-static polarizability of the nanosphere. The transmitted/

scattered electric field by the spherical nanotip determines the dipole moment orientation. Within the fiber, we
consider a z-polarized electromagnetic plane wave with wave vector k; = k; ¥ and amplitude E,, where

wy, = kycis thelaser frequency. Since we work with light tuned close to the atomic resonance, we use ki, & k.
Outside the spherical nanotip, the local electric field in usual spherical coordinates r = (r, 6, ) is given by [31, p
411] as
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E(r, wy) = Eo%eikor{Zcos 01 — ikor)t + sinf[1 — ikgr — (kor)z]é}, (50)
Tr

where al(wy) is the effective polarizability of the spherical nanotip given in equation (49). Here, the near- and far-
field contributions are proportional to 1/r” and kg /r, respectively, whereas the intermediate region are mainly
governed by the term proportional to ik, /. Note that the electric field fixes the spherical coordinate system. In
this case, the y axis is directed along the fiber and parallel to the horizontal axis of figure 1. This choice of
coordinates implies E, = 0, which simplifies the expressions. Finally, we consider that the dipole moment of
atom jis directed along thelocal electric field at r;[28],i.e. dj = dg {E(xj, wi)} /|[[{E(xj, wi)}||. Thisleads to the
Rabi frequency

deg
Qj(rj, wy) = 7|I{E(rp wp) HI» (5D

where the electric field is given in equation (50). Note that we drop the time-harmonic dependence e ! in
equation (50), so that equation (51) is the usual definition of the Rabi frequency. Two specific geometries are
considered in figures 5(A) and (B). In these geometries the interatomic distance is kept fixed at r;, = 50 nm, and
the position of the atoms relative to the tip is varied. The two geometries correspond to situations where the
interatomic vector f, is parallel to the y- and z-axis, respectively. The results for the collective correction and the
dipole—dipole interaction strength are plotted in figures 5(A/B-i/ii). The interaction strength is large, i.e.

[612] > ~,, inalarge region around the tip, such that a reduction of the value of ¢*(0) can be expected according
to figure 3. Note the fact that the collective parameters 0, and y;, are modulated as a function of the angle 6 even
when the atomic distance r from the tip is large. This is caused by the change in the relative orientation of the two
dipoles following the direction of the electric field emitted from the tip.

In order to predict the result of a real experiment we average over many arbitrarily chosen atomic positions.
For this purpose atoms are randomly placed around the tip in a half-sphere shell in 3D with inner radius given by
thetip size, R; = Ryjp = 100 nm, and outer radius twice as large, R, = 200 nm. Its volume is
V = 2.9 x 10" cm’. Thus, a mean number of ;1 = 1 atom in the volume corresponds to an atomic density of
p = 3.4 x 10" cm ™ which can be reached in experiments with ultracold atoms. In order to take into account
the poissonian distribution of atoms in the volume for ;4 = 1 where the probability of having one atom in the
volume is twice as large as having two atoms in the volume, twice as many realizations are simulated for the one-
atom case than for the two-atom case. We simulate 100 and 50 realizations, respectively. For each realization a
quantum Monte Carlo simulation is carried out with the respective parameters 7y, 72, V12, 612, §21, and §2, given
by the positions of the atoms relative to the tip. The Rabi frequencies are an open parameter, because they are
proportional to the laser power used in the experiment. In the simulation they are scaled such that a Rabi
frequency of Q) = ~,is reached at the surface of the nanotip, i.e. at the position r = 100 nm, # = 90°, and
© = 90° within the yz-plane. Moreover, in the one-atom case, the Rabi frequency acting on the second atom and
the collective parameters are artificially set to zero, 2, = 0,9, = 0,and ~;, = 0. Thus, the second atom is not
excited and has got no influence on the first atom. A g¢®-function is calculated from the trajectory of each QMC-
simulation. The individual ¢*-functions are weighted with their corresponding rate of photon emission and are
averaged. Such averages are calculated for the one-atom cases and the two-atom cases, and for the statistical
mixture of both. The results are plotted in figure 6. The averaged g'”-function of the one-atom cases drops to
zero for 7 — 0, as expected for a single emitter. In the two-atom cases the value of the averaged ¢*(0) > 0.5.
The dipole—dipole interaction of both atoms leads on average to an increase of g'*(0) above the non-interacting
case and thus to bunching, although values of g (0) < 0.5 (i.e. strong antibunching) can be reached for
specific positions of the two atoms. However, the photon emission rate of the two-atom case is reduced,
compared to the non-interacting situation. The averaged photon emission rates in figure 6 are given in the one-
atom case by R; 4 = 0.30 ~p, in the two-atom case by R,a = 0.42 ~,, and in the statistical mixture by Ry, = 0.
34 ~,. Without interactions the emission rate of the two-atom case would be Ry = 2Rjy = 0.6 7. Thus, the
value of g(z)(O) of the statistical mixture of atoms is reduced to a value of g(z)(O) = 0.25 smaller than without

interactions. At the same time, the brightness B defined by (6) is with B = % = 1.13 comparable to the one-

atom case.

In the simulations shown in figure 6 we have neglected the action of the Casimir—Polder (CP) potential on
the atoms. Depending on the distance from the surface this potential changes the atomic transition frequencies
and leads to an effective detuning. The strength of the CP potential close to a dieletric sphere can be calculated
following [32]. In our situation, i.e. for Rubidium atoms at the surface of a dielectric nanosphere with refractive
indexn = 1.5 and sphereradius R = 100 nm, the CP-shift is comparable with the single atom decay rate ~;
from (46) at a distance of ~40 nm. For shorter distances the atomic transition is tuned out of resonance with the
exciting light field. Including the CP potential into our simulations we have checked that photon emission from
these atoms is negligible. Furthermore, it has turned out that in specific two-atom cases when one of the atoms is
detuned and the second is not (because its distance is larger), the g®-function resembles that of a single atom.
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Figure 6. Autocorrelation ¢®-function of photons emitted by atoms in the volume close to the nanotip. The countrate with two atoms
in the volume is reduced by dipole—dipole interactions. Thus, the averaged g'”-function exhibits improved antibunching. For the one-
atom (two-atoms) case 100 (50) realizations are simulated, where the length of each simulated trajectoryis T; = 1 x 10° /7o, and the
resolution is df = 107> /,.

Averaging over many arbitrary geometries the value of §?(0) is however only slightly smaller than that shown in
figure 6 without the CP-shift, which is why we do not show these ¢*-functions.

7. Conclusion and outlook

The paper investigates the light statistics of the fluorescence from statistical mixtures of one and two atomic
emitters within a nanoscale volume. The g‘®-function of the emitted light is derived by a quantum Monte Carlo
approach including dipole—dipole interactions between the atoms and collective decay. The main result of the
paper is the fact that these interactions can improve the antibunching while the brightness of the source tends to
a constant value. This result is interesting for the design of novel single photon sources that are not based on
single emitters but on statistical ensembles. As application, we investigate the situation of cold atoms in a
nanoscale volume at the apex of a nanofiber tip and predict a reduction of the g -function due to atomic
interactions to a value of g”(0) = 0.25. We expect that the quality of antibunching can be further improved by
optimizing the radius of the nanotip, the atomic density and the light power used. Furthermore, manipulating
the shape of the optical near-field, for instance by depositing tailored plasmonic nanostructures on the tip, may
be amethod to restrict the excitation of atoms to those positions where the antibunching is more pronounced. A
second possibility not explored so far in order to manipulate the excitation zone would be to exploit the
resonance shift of the atoms caused by the CP-potential and compensate it in a specific distance from the surface
by the proper detuning. The fluorescence may be also collected by the nanotip which puts further restrictions on
the atomic positions that contribute to the detected signal [ 14]. Using Purcell enhancement close to plasmonic
nanotips a collection efficiency of more than 95% can be reached [13]. As a final remark we would like to add
that the method we introduce can be used also for other types of interactions, for instance van-der Waals
interactions between Rydberg atoms [33].
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